Understanding the XML Dialplan

FreeSWITCH XML Dialplan elements

The default FreeSWITCH XML Dialplan is contained in three main files and two
directories, located in conf /dialplan/:]

¢ default.xml—The primary FreeSWITCH Dialplan configuration 4
* public.xml—Handles calls coming in to FreeSWITCH from another loca .':
* features.xml— A special context for handling specific dialing features
* default/—Files in this directory get included in the default context

* public/—Files in this directory get included in the public context

The default XML configuration has many instructions for routing calls, all of whichj
make use of the basic building blocks of a Dialplan: contexts, extensions, condition
and actions. A context is a logical grouping of one or more extensions. An extensiog
contains one or more conditions that must be met. Conditions contain actions that
will be performed on the call, depending on the whether the condition is met or 3
not. Before discussing these building blocks further, though, let's revisit some of 3
the concepts we first considered in Chapter 3, Test Driving the Default Configuration.

Call legs and channel variables

Phone calls to and from FreeSWITCH consist of one or more call legs.
A "one-legged" connection might be something like a user dialing into his or her
voicemail. A traditional call between two parties is a connection with two call legs. |
Recall the following illustration from Chapter 3, Test Driving the Default Corifiguration

A traditional call with two legs

FreeSWITCH |
User checking :: . 3
§ hisorher i Aleg'—yp/
g voicemail :'
: Calling Receivi
A “one-legged” Call | Party Party neé

[82]

_

Chapter 5

A call between two different telephones consists of an A-leg (calling or originating
party) and a B-leg (receiving party). Each call leg is also known as a channel, as

in an audio channel. Each channel has a set of logical attributes, what you might

call a list of facts about that particular call leg. Each of these attributes is stored in a
corresponding channel variable. In the previous chapter, we learned that a registered
user has several channel variables defined, and these variables are included in call
legs involving that user. To get an idea of just how much information is available for
acall, you can call the information extension at 9192 following the steps below:

1. Launch fs_cli and issue the command /1log 6
2. From aregistered phone dial 97192

You will see dozens of lines of information. Following is an excerpt from an
info dump:

2009-12-09 13:50:40.685247 [INFO] mod dptools.c:916 CHANNEL_DATA:
Channel-State: [CS_EXECUTE]

Channel-State-Number: [4]

Channel-Name: [sofia/internal/1001@10.15.0.94]
Unique-ID: [dd9fbb65-971e-4b65-9f2e-586bde83a6bf]
Call-Direction: [inbound]
Presence-Call-Direction: [inbound]

Channel -Presence-ID: [1001@10.15.0.94]
Answer-State: [answered]

Channel -Read-Codec-Name: [PCMU]
Channel-Read-Codec-Rate: [8000]
Channel-Write-Codec-Name: [PCMU]
Channel-Write-Codec-Rate: [8000]

Caller-Username: [1001]

Caller-Dialplan: [XML]

Caller-Caller-ID-Name: [Michael Collins]
Caller-Caller-ID-Number: [1001]
Caller-Network-Addr: [10.15.0.124]

Caller-ANI: [1001]

Caller-Destination-Number: [9192]

variable_sip received_ip: [10.15.0.124)
variable sip received port: [29935]
variable_sip via_protocol: [udp]
variable_sip authorized: [truel
variable_sip number alias: [1001]

[83]

Understanding the XML Dialplan

variable sip_auth_username: [1001]

variable_sip auth_realm: [10.15.0.94]

variable number alias: [1001]

variable toll_allow: [domestic,international,local]
variable accountcode: [1001]

variable user context: [default]

variable effective_caller_ id name: [Michael Collins]
variable effective_caller_ id number: [Michael Collins]

The lines beginning with "variable_" show the values in the respective channel
variables. For example, the line variable_sip_authorized: [true] is showing
that the value of sip_authorized channel variable is "true". You will also notice that
there are numerous other data elements such as Unique-1ID and Call-Direction.
These are info application variables. Most (but not all) of these are available as
read-only values, which can be accessed just like channel variables.

Accessing channel variables

Within the Dialplan, variables are accessed with a special notation: ${variable
name }. Consider the following example:

<action application="log" data="INFO The value in sip_authorized is
'${sip_authorized}' "/>

This action would print out a log message to the FreeSWITCH command such as
the following:

2009-12-09 14:32:48.904383 [INFO] mod dptools.c:897 The value in sip_
authorized is 'true’

Accessing the read-only values is much the same. Each of these values has a
corresponding channel variable name. For example:

<action application="log" data="INFO The value of Unique-ID is
'${uuid}' />

This will print a log line on the FreeSWITCH command line such as the following:

2009-12-09 14:46:31.695458 [INFO] mod dptools.c:897 The value of Unique-
ID is 'l69ae42e-29f5-4elc-9505-8ee6ef643081"

A complete list of info application variables and their
R corresponding channel variable names can be found at the

following address: http://wiki.freeswitch.org/
wiki/Channel Variables#variable xxxx.

[84]

Chapter 5

In the preceding example, the extension will log some information to the
FreeSWITCH command line depending upon what the user dialed. If the user dials
9101, the action is executed and the log displays, "You dialed 9101". If the user dials
anything other than 9101, then the anti-action is executed and the log displays, "You
did NOT dial 9101".

Most extensions you create (and indeed, in the default Dialplan) will have many
actions but few anti-actions. In most cases, actions execute Dialplan applications
which in turn may accept arguments. In the preceding example, the 1og application
is executed and the data attribute contains the argument passed to it.

How Dialplan processing works

Understanding the Dialplan is easier if you can visualize what happens when a call
comes in. Often, we hear expressions like "the call traverses the Dialplan" or "the call
hits the Dialplan". What exactly does that mean? Let's walk through the processing
of a call, so that we can really understand what XML Dialplan is doing.

The Dialplan has two phases: parsing and executing. The Dialplan parser looks for
extensions to execute. When it finds a matching extension, it then adds the actions

(or anti-actions) to a list of tasks. When the parser finishes looking for extensions, the
execution phase begins, and the actions in the task list are performed.

A good way to see all of this in action is to watch the FreeSWITCH console in debug
mode while making a test phone call. Launch fs_c1i, make a test call to 9196 (music
onhold), and then hang up the phone. Scroll back in your terminal and look for a
line that looks something like the following:

2009-12-09 22:23:16.727746 [INFO] mod dialplan xml.c:408 Processing Test
User->9196 in context default

This is the start of the Dialplan processing. A telephone whose user is named "Test
User" has dialed 9196. (Your console will display the name of the user associated
with the phone from which you dialed.) The lines following begin with "Dialplan:"
and are debug messages, showing which extensions matched and which ones did
not. The first extension parsed is called "unloop". It is an important extension, but

is not very interesting for our Dialplan discussion. Look down to the next extension
that gets parsed. In our example, call the debug output is as follows:

Dialplan: sofia/internal/1001@10.15.0.91 parsing [default->tod_example]
continue=true

Dialplan: day of week[4] =~ 2-6 (PASS)

Dialplan: hour{22] =~ 9-18 (FAIL)

Dialplan: sofia/internal/1001@10.15.0.91 Date/Time Match (FAIL) [tod
example] break=on-false

[91]

Understanding the XML Dialplan

The extension tod_example (time of day example) is shown being parsed. These
debug lines correspond to the tod_example extension found in conf/dialplan/
default.xml:

<extension name="tod_example" continue="true">
<condition wday=%"2-6" hour="9-18">
<action application="get" data="open=true"/>
</condition>
</extension>

This extension simply checks the time of the day and the day of the week. If the
call is made on a weekday (Monday through Friday) during business hours,

(9 AM to 6 PM) then it sets the channel variable open to "true". This call was made
on a Wednesday at 10:23 PM. Therefore, it passed the wday (day of week) test but
not the hour (hour of day) test. Had the call been made between 9 AM and 6 PM
then both conditions would have been met, and the set application would have
been added to the task list. Notice that the tod_example extension has
continue="true". This means that the Dialplan will continue parsing

extensions even if tod_example matches.

The parser continues trying to match extensions, most of which fail:

Dialplan: sofia/internal/1001@10.15.0.91 parsing [default->global-
intercept] continue=false

Dialplan: sofia/internal/1001@10.15.0.91 Regex (FAIL) [global-interceptl]
destination number(9196) =~ /"“886%/ break=on-false

Dialplan: sofia/internal/1001@10.15.0.91 parsing [default->group-
intercept] continue=false

Dialplan: sofia/internal/1001@10.15.0.91 Regex (FAIL) [group-intercept]
destination number (9196) =~ /“*8%§/ break=on-false

Dialplan: sofia/internal/1001@10.15.0.91 parsing [default->intercept-ext]
continue=£false

Dialplan: sofia/internal/1001@10.15.0.91 Regex (FAIL) [intercept-ext]
destination number(9196) =~ /“**(\d+)$/ breaks=on-false

Dialplan: sofia/internal/1001@10.15.0.91 parsing [default->redial]
continue=false

Dialplan: sofia/internal/1001@10.15.0.91 Regex (FAIL) [redial]
destination number (9196) =~ /"870$/ break=on-false

Dialplan: sofia/internal/1001@10.15.0.91 parsing [default->globall
continue=true

Dialplan: sofia/internal/1001@10.15.0.91 Regex (FAIL) [global]l ${call_
debug} (false) =~ /“true$/ break=never

Dialplan: sofia/internal/1001@10.15.0.91 Regex (FAIL) I[global] ${sip_
has_crypto}() =~ /*(AES_CM 128_HMAC_SHAl 32|AES_CM_ 128 HMAC_SHAl 80)$/
break=never

[92]

